

Volatile elements on Earth and other planets originated as ices.

Martin & Livio (2021), Altwegg et al. (2016, 2018), Biver et al. (2015) Image credit: Rosetta Mission, ESA

Planetary ices (partially?) inherited from molecular cloud ices

Icy legacy of space-based InfraRed telescopes

ISO SWS/LWS: Diversity of ice species seen towards select, bright targets.

Chemistry theory

(Left) Gibb et al. 2000, (Right) Boogert, Gerakines, & Whittet 2015, ARA&A review

ISO SWS/LWS: Diversity of ice species seen towards select, bright targets.

Astronomer approximation

(Left) Gibb et al. 2000, (Right) Boogert, Gerakines, & Whittet 2015, ARA&A review

Ices determine initial exoplanet atmospheric compositions.

JWST gets > ISO resolution, even towards extremely faint targets.

Now see that ices are *highly* mixed with H₂O matrix, scrambling layers...

McClure + Ice Age team (2023), Nature Astronomy, Qasim et al. (2018, 2020), Lamberts et al. (2017, 2022), Pontoppidan et al. (2003)

Now see that ices are *highly* mixed with H₂O matrix, scrambling layers...

McClure + Ice Age team (2023), Nature Astronomy, Qasim et al. (2018, 2020), Lamberts et al. (2017, 2022), Pontoppidan et al. (2003)

Now see that ices are *highly* mixed with H₂O matrix, scrambling layers...

McClure + Ice Age team (2023), Nature Astronomy, Noble + Ice Age team (2024), Nature Astronomy

So what does an inheritance of mixed cloud ices mean for disks and exoplanets?

MIRI image of Tau 042021 disk, Duchene et al. (2023), ALMA/HST image of HH48 NE, Villenave et al. (2020)

JWST Ice Age: NIRSpec+MIRI spatially resolve ice inventory in protoplanetary disks!

Ice maps show no radial or vertical snowlines, even for CO ice...

CO ice trapping + turbulent lofting?

Ice profiles show CO ice doesn't form pure layer; diffuses into CO2 ice matrix!

Mixed ice revision to exoplanet atmosphere formation tracer. Sufficient?

Far-infrared thermal emission reveals midplane ice composition!

Far-infrared thermal emission reveals midplane ice composition!

Herschel + ISO: Different midplane "ice/rock" ratios for MK/AeBe disks.

ice FeSi;> artifact;> 140 120 <u>5</u> 100 80 **PACS** 60 ISO 1.5 warmup series (T=50K) direct deposit (T=50K) 1.0 cooldown series (T=50K) 0.5 70 90 50 60 100 80 $\lambda [\mu m]$

Herschel: McClure et al. (2012, 2015)

Only 6% of 50 young disk sample show ice.

H₂O ice/silicate rock ~ 0.5

Min et al. (2016)

1 high-mass older disk

"Solar" ice/rock ~ 1.6

Three most abundant ice species (H_2O , CO, CO_2) have Far-IR features from 40-250 μ m.

S. Ioppolo, private communication, McGuire, Ioppolo et al. (2016)

Giuliano et al. (2019)

Ice mixtures and COMs (potentially) identifable by wavelength shifts in Far-IR...

Ioppolo et al., FD168 (2014)

Opacities from Hudgins et al. (1993), models based on McClure et al. (2015)

PRobe far-Infrared Mission for Astrophysics (PRIMA): NASA FIR Probe candidate

Direct access to composition and structure of midplane planetary birth zones.

PRIMA (launch 2031, if accepted fall 2025) would allow us to:

- Detect water vapor & ice content in cometary ice reservoir for planetary delivery,
- Measure major ice species and degree of complexity?
- Chart the evolution of ice and gas distributions.

Infrared: JWST
Far-IR: PRIMA
Sub-mm: ALMA

Summary & Conclusions

 Ice composition details matter for exoplanet atmosphere formation theory

• JWST reveals new mixed ice complexities

 Far-IR midplane ice observations are missing link to exoplanets

