

Multispectral Observations of the Sun: Infrared to Millimeter Wavelengths

Sven Wedemeyer

Rosseland Centre for Solar Physics, Institute of Theoretical Astrophysics
University of Oslo, Norway

- Stratified, varies with height
- Highly dynamic
- Intermittent
- Dynamically coupled
- Structured on a large range of spatial scales (even below current limit of ~0.1")
- Plethora of processes.
- The Sun is dynamic on short timescales.
- Observations different than for many other astronomical objects.
- Can create challenges when using general purpose instruments

Solar Science Cases

Wedemeyer et al. 2016, Space Reviews, 200, 1Science

Essential for the Sun's atmosphere as a complex and dynamic object:
 dependent thermal, kinetic and magnetic structure

3D time-

• Coronal/chromospheric heating problem: are the outer layers of the Sun so hot? (T > 10⁶ K!)

Why

- A long-standing central problem in solar / stellar astrophysics (known and unsolved for > 80 yr)
- ➤ How are the outer layers heated?
- Applies to (solar-like) stars in general

Solar Science Cases

- Energetic events The Sun as the source and driver of space weather
- Solar flares, coronal mass ejections, solar wind
- Impact on technological infrastructure (power grids, satellites etc)
- Input from the Sun poorly understood, making current forecasting unreliable
- Implications for other stars, exoplanet habitability

- Different continua and spectral lines probe different plasma properties in different domains/layers
- Multi-wavelength co-ordinated space-borne/ground-based campaigns as standard in modern solar physics

Different continua and spectral lines probe different plasma properties in different

Angular resolution for a fixed aperture

UV

Visible

- Covered well with ground-based and space-borne instruments
- Continuum, spectral lines, magnetograms
- 4m-class telescopes:
 - DKIST (Hawaii, first light in 2019)
 - European Solar Telescope (proposed)

• 24/7 monitoring from space

Height [km]

Magnetogram – SDO

Infrared

Height [km]

- Ground-based telescopes
- Typically only up to a few micron (except for, previously: McMathPierce telescope up to 21 micron)
- CO lines temperature constraints
- Helium 10830 Å magnetic field in the upper atmosphere
- Maps the middle photosphere, convective overshooting dying off with height
- 10-300 micron maps upper photosphere:
- > Less structure
- Less scientifically interesting

Ultraviolet - continuum and spectral lines suitable diagnostics for the chromosphere • Space-borne telescopes – limits aperture and thus resolution

- Complicated formation mechanisms and non-equilibrium effects (e.g., ionisation, non-LTE)
- > Uncertainties for the derived chromospheric plasma properties (like temperatures)!
- > Interpretation difficult.

mm wavelengths

- Measured brightness temperature closely related to the (electron) temperature in the continuum-forming layer
 - Formation height increases with wavelength
- High spatial + temporal + spectral resolution = big leap!
- Polarisation: Local magnetic field (offered for Band 3, first regular observ. in 2024)

Remaining challenges:

- Absolute brightness temperatures (TP calibration)
- Sparse uv coverage for snapshot imaging (target changes fast!)
- Only one receiver band at a time (small height range!)
- Too little observing time ...

mm wavelengths

wavelengths

- Multi-band observations for atmospheric tomography
- Time-dependent 3D thermal structure of the atmosphere
- How can this be achieved?

Probed atmospheric height increases with wavelength

- Fast cycling through up to 3 ready receiver bands (currently not possible with ALMA
- Mapping different layers in the chromosphere quasi-simultaneously

Numerical simulations

- Detailed simulations of the Sun and ALMA to suggest and develop observing modes
- Strictly simultaneous observations across a very extended wavelength / frequency

Sub-Arrays — Dual-band observations

- Wanted: Wide-frequency range simultaneously
- Simulations with SASim: 1 sub-array @ Band 3 + 1 sub-array @ Band 6. (M.Sc. thesis project of E. Martaillé Richard, UiO, 2024)

R CS

Future ALMA upgrades

ALMA WSU

- Extended bandwidth and combined receiver bands!
 - Slope across receiver band as proxy for temperature gradient in the mapped (chromospheric) layer
 - Extended multi-frequency synthesis for improved data quality (uv coverage limited for snapshot imaging!)

ALMA 2040

- Better uv coverage (more antennae)
- Strictly simultaneous observing in very broad frequency range

50m single-dish antenna to be located at the ALMA site

Solar science cases for AtLAST (Wedemeyer et al. ORE 2024)

Wanted capabilities

- Camera with > 50 000 "pixels"
- Fast scanning
- Continuum observations for at least 6 frequencies across ~90 — 700 GHz simultaneously

Complementary to ALMA

R CS

- Simulations with maria Kirkaune et al (submitted):
 - Scanning the whole disk of the Sun at high cadence
 - Cadence down to ~30s for a 1st generation instrument with poossibly 4-8 continuum channels
 - 2nd generation instruments even faster

ALMA TP Band 3

ADS/JAO.ALMA# 2022.1.01544.S

AtLAST Band 3

Case A: 100 GHz

AtLAST Band 10

Case A: 950 GHz

Solar monitoring with Solaris

- Aim: 24/7 365 days monitoring of the Sun at mm wavelengths
 - Input for space weather forecasting
- Italian-led consortium (Pellizzoni, Potenza et al.)
- Stations Antarctica and Alpes active
- To follow: Station in Arctic

- The wider the frequency range, the better the structure of the solar atmosphere can be reconstructed
 - Coordinated observations + data inversion
 - Full polarisation observations for magnetic field measurements
 - High-cadence and strictly simultaneous (1 second)
 - > Enables high-impact science (atmospheric heating, solar/stellar activity, space weather)