

The Aromatic Cosmos: exploring Carbon chemistry in space

Alessandra Candian Anton Pannekoek Institute University of Amsterdam

Cosmic Carbon

• 4th most abundant element in the Universe

6 **C** 12.011

- 4th most abundant element in the Universe
- Different "shapes" => building block of life as we know it

6 C 2.011

- 4th most abundant element in the Universe
- Different "shapes" => building block of life as we know it

PAHs and Aromatic Infrared Bands

JWST launch gives a new view on PAH emission

A Population of AstroPAH

Several IR mission and the interdisciplinary work of astronomers, experimentalist and theoreticians put constraints on Astro PAH population

Charge: +/0/-Size: $N_{c} > 50$ Hetero atoms: D, C Funct. groups: CH_{3.} CN Cosmic PAH PAH IR Spectral Database portal

A Population of AstroPAH

Charge PAHs dominate close ti the central star

A Population of AstroPAH

We can trace the PAH size using band ratios.

The evolution of AstroPAHs: JWST

PI: Berné, Habart and Peeters

The evolution of AstroPAHs: JWST

PI: Berné, Habart and Peeters

PAH SIZE: 3.3/11.2 ratio

- Larger PAHs closer to the PDR surface
- Smaller PAHs in the more shielded environment

The evolution of AstroPAHs: JWST

PAH SIZE: 3.3/11.2 ratio

- Larger PAHs closer to the PDR surface
- Smaller PAHs in the more shielded environment

Aliphatic (3.4)/Aromatic (3.3) ratio

- Aliphatic sidegroups destroyed by UV field

Chown+, 2024; Schefter+, in prep

PAH photochemical evolution

Supported by experiments and modelling

(Berne and Tielens 2010; Montillaud+, 2014, 2016; Castellanos, AC, +, 2018a, b; Andrews, AC, + 2016, Panchagnula, Kamer, AC et al., 2024; Sundararajan, AC et al., 2024)

The shape of AstroPAHs: JWST

Possible PAH shapes proposed for the Orion Bar

Khan+, 2025

The shape of AstroPAHs: JWST

11.2 µm has 2 components with different spatial distribution

The shape of AstroPAHs

11.2 µm has 2 components with different spatial distribution

Khan+, 2025

Searching for PAHs with ALMA

- 9hrs ALMA observations
- Upper limit nC in corannulene: 9x10⁻⁷
- Revising formation routes
- Tentative detection of H₂O and c-C₃H₂: mini-PDR region? (Bujarrabal+, 2023)

Koo, AC, + 2025, submitted

Improving PAH spectral modelling

Accurate Quantum Chemistry calculations + benchmark with experiments to obtain "real" PAH emission spectrum

Mackie, AC+ 2021; Peeters+ 2021; Reems, AC + in prep.

PAHs FAR-IR modes and PRIMA

Joblin et al 2011; Wiersma, AC, et al 2022

PAHs have intense far-IR very harmonic vibrational modes => FIRESS can "identify" PAHs in irradiated regions because modes are symmetry-dependent

Take home message

- · PAHS ARE FUNDAMENTAL INGREDIENTS OF THE ISM
- JWST ALLOWS US TO CONSTRAIN PAH EVOLUTION FROM THE ISM TO PLANET-FORMING REGIONS
- EXPERIMENTS, COMPUTATIONAL CHEMISTRY AND MODELLING ARE FUNDAMENTAL TO INTERPRET OBSERVATIONS
- FIRESS COULD IDENTIFY PAHS IN PDRS

