

Unveiling the role of magnetic fields in filaments

Taurus Molecular cloud (André et al PASP 2019)

04h 50m

20

R.A. (J2000)

MonR2: ArTéMiS + Herschel N_{H2} map (8" resolution)

Needs for a high sensitivity polarimeter camera in the submm

Our starting point: Herschel / PACS Silicon Resistive Bolometers in the 2000's

The goal: large format high sensitivity detectors in the $50 - 200 \,\mu m$ range.

CEA's choice: 16x16 Silicon array of bolometers working at 300 mK

Thermometer

Absorber

- « All Silicon » design
- -Very High impedance (~ GOhm)

$$R = R_0 \exp\left(\sqrt{\frac{T_0}{T}}\right) \exp\left(-\frac{qL_{(T)}E}{kT}\right)$$

- -Very High Response
 - -> 2.10¹⁰V/W
- Cryogenic Multiplexing (MOS): 16 to 1
- **NEP** $\sim 2.10^{-16}$ W/VHz at 300 mK

• 2560 pixels, 3 bands (70, 100, 160 μm)

Credits: ESA/PACS/SPIRE/Martin Hennemann & Frédérique Motte

- 30% of observing time, most used instrument
- (40 % if parallel mode included)

ArTéMiS on APEX : A Dual Band camera (350 & 450 μm) since 2013, still operating

Artémis 350 µm focal plane

Number of operational pixels	2400
Spatial Resolution 350 μm 450 μm	8" 10.5"
FOV (350μm)	4,7 x 2,3 arcmin ²

- Complementary to Herschel Data at 350 μm (extended emission + spatial resolution)
- Observing Run in Sept. 2024
- Another Observation run in July/August this year

Why Silicon bolometers?

« Si Technology is not (completely) dead...! »

RESOLVE onboard the JAXA-NASA XRISM Mission

6x6 Silicon μ-Calorimeters from NASA Goddard working at ~50 mK

(with ESA participation)

Why Silicon bolometers?

- Silicon is an amazing material: very high thermal resistance can be reached at low temperature => high sensitivity
- Si micro-machining enables to design complex pixel structures to build compact space instruments
- No Need of Magn. shielding
- High Sensitivity Imaging-Polarimetry inside the pixel is a direct application of these possibilities
- Also, « High impedance » is compatible with CMOS classical electronics that works at 50 mK (EU CESAR project).

~2000

- In 2016, we joined the SPICA mission with the B-BOP Instrument : a 3 bands imaging polarimeter (70, 200 and 350 μm)
- Science Case: Magnetic Field in the ISM

The B-BOP Detectors

Each Pixel detects dual polarization. How?

16x15 H dipoles 15x16 V dipoles

This is one Pixel 750x750 μm

This is not a phased array antenna.

% half wave » dipoles (1.6 x 34.6 μ m) R ~10 Ω/\Box

When a linearly polarized photon couples to the resistive antenna, its temperature rises.

A (sensitive) thermometer measures this rise.

« Horizontal »
Thermometer #1

- Classical
 Wheatstone Bridge
- 6 points of measurement for the prototypes (will be optimized in future versions)

The SPICA BBOP test arrays (for the 100 μm band) 750 μm 16x16 Bolometer Array

- This design enables
 - Very good optical coupling without horns or Si lenses
 - Full knowledge of Stokes parameters inside the Airy disk, without polar. modulation

Nyquist sampling -> we get

Airy Disc @ 70 μm

Stokes parameters

« ECLIPSE »: the 50 mK readout electronics

256 pixels with 6 readout units in each pixel=>1536 readout units

With this Wheatstone bridge circuit, for each pixel we get :

- Differential polarization unbalance between H and V signals
- Differential amplitude signal

The ADC's are optimized to adapt to the very different dynamic ranges.

Testing the Arrays

Extreme challenge: the optical background is ~ fW/pixel

30K Optical source, using concentric emitting rings

- Main parameters have been measured at cold temperature
- Very good results (NEP Goal for SPICA/BBOP reached)
- Challenges: thermal issues (readout currents), full MUX demonstration

B-BOP, the instrument on SPICA

« Simple & Compact Design »: No moving part, no rotating plate (except for calibrator unit), no Magn. Shield.

Big Advantage on the System Point of View

4K Entrance Structure

with Fore Optic

Hybrid Cooler

+ ADR stage)

(300 mK sorption fridge

- The Focal Plane Assembly contains 6 bolometer modules (1344 bolometers in total).
- It is a « 3 levels » system : 2K housing, 300mK and 50mK stage (structures suspended by Kevlar wires)

- Mass ~ 25 kg (63 kg including warm electronics)
- Power : 86 W (warm electronics)
- Power dissipation @ 50 mK ~1 μW

Adding (mid-R) Spectroscopy to the Array

(1) A Compact Scanning Fabry-Perot

(2) A Bayer Filter Array

Spectroscopy – Preliminary results (R ~ 200 / 300)

Adjustable cryogenic Fabry-Perot made of Si Bragg mirrors

Stationary array of Fabry-Perot made of microstructures Si.

What's Next?

• CO-PILOT (?)

(C+ @ 158 μm)

P LARYS

• The TALC Deployable Space Telescope

Summary

- We push Silicon technology to its limits: high sensitivity & in-pixel functions
- The in-pixel polarimetry enables very compact and simple instrument (no moving part) – Optimization of the system
- Robust & High TRL: Herschel heritage, PhaseA study for SPICA
- Challenges on RO electronics / Detection layer on thermal aspects
 / MUX
- Opportunities toward Artemis2, TALC (?)

Contributors

Saclay DAp Group

C. Delisle

E. Doumayrou

J. Martignac

X-F. Navick

A. Poglitsch (MPE)

V. Revéret

L. Rodriguez

J-L. Sauvageot

T. Tollet

Saclay DEDIP Group

X. Coppolani

X. De la Broise

A. Demonti

S. Dubos

O. Gevin

Grenoble Leti Group

A. Aliane

L. Dussopt

V. Goudon

A. Jouve

H. Kaya

Fundings

Potential development for a future far-IR space mission

- A multi-band polarimetric camera « à-la BBOP », i.e. with photon noise performance and polarimetric capabilities inside the pixels
 - Several bands possible between 50 μ m and 500 μ m. Bands at λ >500 μ m are possible (our technology has been demonstrated up to the mm), but that requires more R&D for pixel design.
 - Multiplexed 32x32 arrays should be possible to build (that was the plan for BBOP), and can be abutted on 3 sides to build large focal planes.
 - For a SPICA like telescope, at 70 μ m (BBOP Band 1), a FOV of 7.5'x3.7' could be reached with a focal plane made with 4 x 2 arrays.